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ABSTRACT

Detecting concealed information is a critical challenge in forensic investigations, security screening, and cognitive neuroscience.
Conventional approaches using the Concealed Information Test primarily rely on binary classification, distinguishing between
recognized (concealed) and unrecognized (neutral) stimuli. This limits interpretability and fails to reveal the nature of the
concealed knowledge. In this study, we present a novel multimodal framework that moves beyond binary detection by decoding
the category of concealed information into object, person, or place based on neurophysiological signals recorded during
a concealed information test. High density electroencephalography and physiological signals, including skin temperature,
galvanic skin response, and photoplethysmogram, were simultaneously recorded from ten subjects as they viewed visual
stimuli representing these three categories. Temporal and spectral features were extracted from both modalities, followed by
machine learning based multimodal fusion for classification. The proposed framework achieved an overall accuracy of 94.2%,
significantly outperforming unimodal EEG (73%) and physiological (54.2%) baselines. Further analysis showed that similar
decoding performance can be achieved using as few as eight strategically selected EEG electrodes, supporting the feasibility
of lightweight, wearable implementations. The most informative electrodes were located over prefrontal and frontocentral
regions, aligning with cognitive processes related to attention, recognition, and deception. These findings demonstrate that
neurophysiological signals enables not only the detection of concealed knowledge but also the identification of the type of
hidden information. The integration of EEG and physiological signals enhances both sensitivity and interpretability by capturing
complementary aspects of cognitive and affective processing during recognition. By enhancing the CIT paradigm from binary
recognition toward semantic decoding, this study advances the development of interpretable deception detection systems and
bridges laboratory neuroscience with real world forensic applications.

Introduction
Deceptive behavior is a core feature of human interaction, and the ability to determine whether individuals possess concealed
knowledge remains a central challenge in forensic science, intelligence operations, security screening, and applied cognitive
neuroscience. In many investigative contexts, a person may recognize critical details about an event yet deliberately suppress
any outward sign of that recognition. For more than a century, researchers and practitioners have turned to physiological
measurement based on the premise that mental processes leave measurable traces in the body. Because recognition, emotion,
and intentional concealment depend on neural activity and interact closely with autonomic systems, changes in physiology
often accompany attempts to hide information. Early methods relied largely on observation, but advances in measurement
technology made it possible to record subtle physiological signals with increasing precision, shaping the modern field of
psychophysiological deception detection1–4. Reliable techniques for identifying hidden knowledge can sharpen investigative
focus and provide insight into internal cognitive states that are not evident from behavior alone.

One of the most widely used paradigms for detecting concealed knowledge is the Concealed Information Test (CIT), a
psychophysiological method derived from Lykken’s Guilty Knowledge Test, which originally relied on galvanic skin response
(GSR) measurements5. The CIT is closely related to the oddball paradigm, a well-established design in cognitive neuroscience
in which infrequent “deviant” stimuli are embedded among frequent “standard” stimuli. In typical oddball tasks, rare targets
evoke a larger P300 component of the event-related potential (ERP) compared to standard stimuli6. In the CIT, the frequent
“irrelevant” stimuli correspond to standards, whereas the rare “probe” item, information known only to someone with knowledge
acts as the deviant. Numerous P300 based CIT studies have shown that knowledgeable individuals produce a significantly larger
P300 to probe items than to irrelevant items, mirroring the classic oddball effect7–9. Framing the CIT within this paradigm
highlights the cognitive and neurophysiological mechanisms through which meaningful stimuli elicit differential cortical
responses, thereby revealing concealed knowledge10–12.



Traditionally, CIT based systems have focused on binary classification, distinguishing between “known” (concealed) and
“unknown” (neutral) stimuli13, 14. While effective, this approach provides limited interpretability, offering no insight into the
nature of the concealed content. Early research primarily relied on electrodermal activity or GSR, particularly skin conductance
responses5, 15–17, which reflect sympathetic arousal and increase in response to probe items. Electroencephalogram (EEG)
especially the P300 component, provides higher temporal specificity and sensitivity to attentional relevance18–20. However,
EEG based CITs are susceptible to noise, individual variability, and often require averaging across trials. Although both
modalities are effective individually, relatively few studies have integrated EEG and GSR21–23, and multiclass classification of
concealed content remains largely unexplored.

In addition to EEG and GSR, studies have incorporated photoplethysmography (PPG) and skin temperature lie detection
and concealed information paradigms. PPG provides a non invasive measure of cardiovascular activity, including heart rate
and heart rate variability(HRV), which have been shown to reliably differentiate deceptive from truthful responses during the
CIT24–26. Skin temperature, measured via thermal imaging, captures vasomotor changes mediated by the sympathetic nervous
system, reflecting arousal and orienting responses elicited by crime relevant stimuli27–29. Both modalities offer complementary
temporal profiles usefult to detect hidden mental states30, 31; PPG is sensitive to rapid, phasic cardiovascular changes associated
with orienting and recognition, while skin temperature captures slower, sustained autonomic shifts in response to salient stimuli.

Multimodal integration leverages the complementary strengths of central(EEG) and autonomic (GSR) nervous system
measures. EEG captures rapid neural dynamics reflecting stimulus recognition and attentional processes, whereas GSR indexes
sympathetic arousal associated with emotional and cognitive engagement. By integrating PPG, skin temperature, GSR along
with EEG , our multimodal approach can capture a richer spectrum of autonomic cortical interactions. By combining these
signals, it is possible to enhance sensitivity to concealed information, reduce susceptibility to noise or individual variability, and
potentially achieve accurate single trial classification. This approach aligns with emerging trends in affective and cognitive
neuroscience, where multimodal data fusion improves prediction of internal cognitive states32, 33.

Evidence from cognitive neuroscience and machine learning further supports the feasibility of multiclass decoding. Different
categories of visual stimuli, such as faces, objects, and places, elicit separable cortical activation patterns34, 35, and multimodal
approaches have demonstrated improved performance in affective computing and cognitive workload estimation32, 33. Together,
these findings suggest that a multimodal CIT could go beyond binary detection to decode not only whether information is
concealed, but also what type of information is concealed.

While previous studies have shown the potential of psychophysiological measures for detecting deception, there is still
a need for integrated frameworks that link physiological responses to the underlying cognitive processes of recognition. A
multimodal decoding approach can help bridge this gap by combining neurophysiological signals to capture both arousal
and attentional mechanisms involved in concealed knowledge. Beyond improving classification accuracy, such integration
can provide better interpretability of how different neurophysiological systems interact when a person recognizes hidden
information. Advancing in this direction can move the CIT from a purely detection based method toward a deeper understanding
of the cognitive dynamics of concealment.

In this study, we introduce a novel multimodal framework for decoding the category of concealed information during
a CIT. Subjects were presented with visual stimuli representing persons, objects, or locations while high density EEG and
physiological data were recorded. By extracting temporal and spectral features and applying a machine learning based fusion
strategy, we trained classifiers capable of predicting the category of concealed knowledge. Our results demonstrate that
the multimodal approach significantly outperforms unimodal EEG and physiological baselines, enabling richer and more
interpretable deception detection. These findings provide a foundation for future research in cognitive state decoding, neural
semantics, and advanced lie detection systems.

The key contributions of this study are as follows:
1. Development of a multimodal CIT framework integrating EEG, GSR, plethysmography, and skin temperature to capture

complementary neurophysiological and autonomic signals associated with concealed knowledge.

2. Introduction of multiclass concealed information decoding, moving beyond traditional binary detection to classify the
type of concealed information (object, person or place).

3. Robust classification is made possible by applying machine learning-based multimodal fusion that combines temporal,
spectral, and autonomic information.

4. Demonstration that comparable decoding performance can be achieved using a reduced set of strategically selected EEG
electrodes, supporting the feasibility of lightweight and wearable implementations.

5. Empirical validation showing that the multimodal approach significantly outperforms unimodal EEG or physiological
baselines, establishing a foundation for more accurate and generalizable deception detection systems with potential
applications in forensic and security.
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Figure 1. Experimental setup and task paradigm. (A) Schematic of the multimodal neurophysiological recording system,
including EEG, skin temperature (Temp), plethysmogram (Pleth), and GSR sensors acquired during the CIT. (B) Visual oddball
paradigm illustrating the four stimulus categories: object, person, place, and irrelevant presented to participants during the CIT.
(C) Configuration of the stimulus presentation environment used for data acquisition.

Methods

Experimental design protocol and Data collection
Subjects

Ten healthy subjects (7 males, 3 females; age range: 22–26 years) participated in the experiment. Subjects were informed about
the experiment and consent was obtained from all individuals. The experiment conduction and data collection were under an
approved protocol by the Internal Review Board (IRB) of the University of Maryland Baltimore County.

Experimental Paradigm

The experiment consisted of two phases: (1) a text-based, and (2) an image-based. Each phase included five trials of
approximately 300 seconds duration. Each trial contained 10 unique stimuli ( targets, probes, and irrelevants), repeated five
times in randomized order, totaling 50 stimuli per trial. Probe stimuli were highly personal in nature, such as the name of the
participant’s home country, a significant person, or a personally meaningful object. Target stimuli were known in advance and
required a behavioral response; examples included the name of the university or current place of residence (place). Irrelevant
items were neutral and unrelated to the participant. Figure 1B depicts the visual oddball paradigm presented to subjects during
the CIT across the different stimulus categories: object, person, place, and irrelevant. Each stimulus was preceded and followed
by a fixation cross (“x”) displayed for 0.5 s. The stimulus itself (text or image) was presented for 1s as shown in Figure 1C.
Subjects responded using an Microsoft Xbox wireless controller: L1 was pressed for targets, and R1 for all other stimuli
(probes and irrelevants). Responses were instructed to be “long presses” to reduce variability in motor reaction times.

High Density EEG Recording

EEG was recorded using a 64 electrode g.tec EEG cap and g.HIamp amplifier system (g.HIamp, g.tec medical engineering
GmbH, Graz, Austria). The left mastoid (A1) served as the reference and AFz as the ground. All signals were recorded in
bipolar mode at a sampling rate of 600 Hz. Online filtering included a 0.01–30 Hz bandpass and a 58–62 Hz notch filter.
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iCognative® Technology

Brainwave Science, Inc. has developed the proprietary iCognative® system, a commercial EEG based platform and a wearable
device designed for concealed information detection using the P300 event related potential. The technology integrates
electrophysiological and biometric measurements within an autonomous software system aimed at applications in national
security, intelligence, defense, and law enforcement investigations. iCognative® leverages real time P300 based brainwave
analysis to determine whether an individual recognizes specific stimuli, thereby facilitating the identification of concealed
knowledge. In the present study, we adopted the same electrode configuration used in the iCognative® headset (Fp1, Fp2,
Cz1, Cz2, Cz3, Pz1, Pz2, Pz3) to benchmark and compare our results against a wearable, low density EEG configuration. This
comparison was conducted solely to assess the feasibility of achieving comparable classification performance with a limited
number of strategically positioned electrodes benchmarked against research and industry standards.
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Figure 2. Analysis pipeline for multimodal concealed information detection. The workflow comprises four major stages:
data collection involving simultaneous acquisition of EEG and physiological signals during CIT; preprocessing and feature
extraction including artifact removal, temporal spectral feature computation, and normalization for both modalities; machine
learning model training using unimodal and multimodal fusion strategies; and classification of concealed information into
object, person, and place.

Physiological Signal Recording

Figure 1A illustrates the multimodal recording framework containing EEG, skin temperature (Temp), plethysmogram (Pleth),
and GSR sensors used during the CIT. During the experiment, both physiological signals and EEG signals were measured
and recorded with a g.tec amplifier (g.HIamp, g.tec medical engineering GmbH, Graz Austria) at a 600 Hz sampling rate,
low pass filtered at 30 Hz. The temperature was recorded by g.TEMP sensor within a range of 20°C– 45°C placed on the
participant’s left palm. The GSR records the electrical conductivity using the two g.GSR sensor placed on the middle and ring
fingertips, capturing changes in skin conductance associated with sympathetic nervous system activity. The plethysmogram
were measured using a pulse oximeter sensor (g.SpO2 sensor) attached to the left index finger. All physiological signals were
filtered using a low pass filter with a cutoff below 30 Hz and a notch filter between 58–62 Hz to suppress power line noise.
These electrodes were continuously monitored throughout the experimental sessions to capture autonomic responses alongside
cortical activity.
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Stimulus Control and Behavioral Input
In this study, we developed a custom software framework designed to deliver synchronized multimodal and behavioral
data acquisition. The system integrates a MATLAB based stimulus presentation environment with a built SIMULINK
module designed to ensure time synchronization with ongoing neurophysiological recordings. Stimulus onset markers were
automatically generated and logged on every trial, ensuring precise alignment between external event and neurophysiological
signals. Behavioral responses were captured using a Microsoft Xbox wireless controller, which was fully integrated into the
software architecture for real time input monitoring.

Figure 2 illustrates the overall analysis pipeline implemented in this study. As shown, the workflow is organized into four
sequential stages. First, multimodal data including EEG and physiological signals are collected in synchrony with the CIT
while behavioral responses are concurrently recorded. Next, all signals undergo preprocessing and artifact removal, followed by
computation of temporal and spectral features tailored to each modality. Then these features are used to train machine learning
models under both unimodal and multimodal fusion strategies. Finally, the trained models perform classification of concealed
information into the categories of object, person, and place.

Data Preprocessing and Artifact Removal
EEG data preprocessing was performed using the MNE-Python library. First, the raw EEG signals were bandpass filtered
between 0.1 and 30 Hz to isolate frequency bands relevant for event related potential analysis. A notch filter at 60 Hz was
applied to suppress power line interference. Baseline correction was then carried out using a 100 ms pre-stimulus interval to
remove DC offset and low frequency drifts. Subsequently, Independent Component Analysis (ICA) was employed to detect and
remove common artifacts, including those caused by eye blinks, eye movements, and muscle activity.
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Figure 3. Feature engineering from EEG and physiological signals. The multimodal feature extraction pipeline used for
concealed-information detection. EEG features comprise temporal, spectral, and ERP measures, while physiological features
are derived from plethysmography, skin conductance, and temperature signals. All extracted features are concatenated into a
unified multimodal feature vector for downstream classification.

Feature Engineering from EEG and Physiological Signals
Previous research has demonstrated that integrating EEG and physiological characteristics increases classification performance
compared to unimodal techniques, most likely because deception involves both brain dynamics and autonomic responses18, 21, 22.
EEG based deception detection often leverages ERP components and spectral features to differentiate truthful and deceptive
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responses11, 36. Physiological signals, such as GSR and HRV, have also been widely employed to detect autonomic nervous
system changes indicative of deception5, 37–40. The multimodal combination of these features enhances classification accuracy
by capturing complementary aspects of physiological responses22, 41–43. In this study, we extracted a comprehensive set of
features from both EEG signals and physiological signals, including GSR, plethysmography, and skin temperature, to capture
physiological markers associated with cognitive and emotional states relevant to deception detection.

Feature Extraction
EEG Feature Extraction EEG provides a direct measure of cortical activity and allows the detection of rapid neural signatures
related to stimulus recognition and attention. In the context of the CIT, the P300 event-related potential is a well-established
marker of concealed knowledge. It reflects attentional engagement and context updating in response to meaningful probe
stimuli7, 19. In addition to the P300, time-domain features such as mean, standard deviation, skewness, kurtosis, RMS, zero-
crossing rate, and waveform length quantify signal variability and waveform characteristics. These features are linked to
cognitive load and arousal20. Frequency-domain features, including power in delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
and beta (13–30 Hz), capture oscillatory activity related to attention, memory, and inhibitory control, which are relevant to
concealment processes42, 44. ERP metrics such as peak amplitude, latency, mean amplitude, and area under the curve measure
the magnitude and timing of neural responses to probe versus irrelevant stimuli8, 11, 18, 19. EEG data were segmented into
stimulus locked epochs (0.5–1.5 s) to capture event related activity. Using overlapping sliding windows of 100 milliseconds
with 50 millisecond overlap ensures temporal precision and accounts for trial-to-trial variability. Together, these EEG features
provide a detailed representation of the neural processes involved in recognition, attention, and intentional concealment.

Physiological Feature Extraction Autonomic physiological measures reflect the emotional and arousal components of
deception, which often accompany the cognitive recognition of concealed information13, 24. In this study, we extracted features
from three peripheral signals: GSR, plethysmography, and skin temperature. GSR captures sympathetic arousal in response to
probe items. The GSR time series was decomposed into tonic components, representing slower baseline skin conductance level
(SCL) associated with general autonomic arousal, and phasic components, representing rapid skin conductance responses (SCR)
triggered by stimuli15, 17. Phasic responses have been shown to reliably distinguish knowledgeable from unknowledgeable
subjects in CIT paradigms31. Features extracted from GSR included mean and standard deviation of SCL, as well as SCR
metrics such as event count, amplitude, latency, and inter-response intervals, with SCR peaks above 0.1 µs considered effective
responses. Plethysmography provides volumetric changes in peripheral blood flow from which heart rate and inter-beat intervals
can be derived, enabling computation of pulse rate variability (PRV), a reliable surrogate for heart rate variability (HRV).
Time-domain PRV features included mean of NN intervals (meanNN), standard deviation of NN intervals (SDNN), root
mean square of successive NN differences (RMSNN), and the proportion of successive intervals differing by more than 50
ms (pNN50). Frequency-domain features were extracted to quantify power in low frequency (LF, 0.04–0.15 Hz) and high
frequency (HF, 0.15–0.4 Hz) bands, as well as ratios such as LF/HF reflecting sympathetic-parasympathetic balance. Nonlinear
Poincaré parameters SD1 and SD2 captured short- and long-term variability, respectively, providing geometric insights into
autonomic regulation22, 24, 25. Skin temperature captures slower vasomotor changes linked to sympathetic activity. Statistical
descriptors such as mean and standard deviation provide indices of sustained arousal and orienting responses27, 29. Together,
these features capture both rapid, transient autonomic reactions (SCR, RMSNN, SD1) and slower, sustained arousal (SCL,
SD2, ST), offering a comprehensive profile of physiological responses relevant to deception detection in the CIT paradigm. All
extracted features are concatenated into a unified multimodal vector for downstream classification as shown in Figure 3.

Multimodal Feature Extraction and Its Importance
Combining EEG and physiological features leverages complementary information from central and autonomic nervous system
activity, providing a richer and more robust representation of the psychophysiological state. While EEG captures direct neural
correlates of cognitive processes and deception related brain dynamics, physiological signals reflect autonomic responses
such as emotional arousal and stress45. Multimodal fusion enhances the sensitivity and specificity of lie detection models
by integrating these diverse physiological domains, reducing the likelihood of false positives or negatives inherent in single
modality approaches21, 22, 41 and has been demonstrated to improve classification performance in prior research3, 40.

Machine Learning Models
We employed multiple supervised machine learning algorithms to classify the category of concealed information (object,
person, place) using features extracted from EEG, physiological signals , and their multimodal fusion. Algorithm selection
and hyperparameter optimization were tailored to the characteristics of each modality. We evaluated logistic regression46,
support vector machine with RBF kernel47, random forest48, gradient boosting49, extreme gradient boosting (XGBoost)50,
LightGBM51, and CatBoost52. These models capture both linear and nonlinear dependencies, ensemble interactions, and
categorical feature effects.Distinct strategies were applied to account for modality specific properties. Physiological features,
which were low dimensional and relatively noise free, were modeled using logistic regression, support vector machine, random
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forest, gradient boosting, and XGBoost with minimal hyperparameter tuning; features were scaled with z-score normalization
and reduced via SelectKBest. EEG features were high dimensional and temporally complex; Gradient Boosting and XGBoost
were optimized via grid search and validated with stratified five fold cross validation. Multimodal fusion combined EEG and
physiological features, capturing cross modal interactions; ensemble boosting models (gradient boosting, XGBoost, LightGBM,
CatBoost) were used with extensive hyperparameter optimization and feature ranking to maximize classification performance
and interpretability.

Model Training and Evaluation All models were trained using a standardized pipeline. Categorical labels were first encoded
numerically, and the top-performing features were selected using univariate statistical tests (SelectKBest). The dataset was
split into stratified training (70%) and test (30%) sets, and features were standardized using z-score normalization. Models
were trained on the training set with optimized hyperparameters, and performance was evaluated on the test set using accuracy,
precision, recall, F1-score, Cohen’s kappa, and confusion matrices. To assess generalization and robustness, five-fold stratified
cross-validation was applied across EEG, physiological, and multimodal datasets.

Algorithm 1 Electrode Selection Strategy

Require: Feature matrix X (samples × features), labels y, number of electrodes K = 8
Ensure: Selected electrode indices S

1: Extract time-domain, frequency-domain, and ERP features for all electrodes
2: Train XGBoost on all features
3: Compute feature importance scores for each feature
4: Average importance scores per electrode to obtain ranked electrode list
5: Initialize selected set S← /0
6: while |S|< K do
7: for each electrode e not in S do
8: Train classifier on S∪{e} and compute CV accuracy
9: end for

10: Add electrode with highest CV accuracy to S
11: end while
12: return S

Electrode Selection Strategy To identify the most informative EEG electrodes, we applied a hybrid filter-wrapper approach
combining XGBoost based feature importance with greedy forward selection. First, time domain, frequency domain, and ERP
derived features were extracted from high density EEG for each electrode. Next, an XGBoost classifier was trained on all
features to compute feature importance scores, which were averaged per electrode to obtain an initial ranking (filter step). To
refine this ranking, we applied greedy forward selection: starting from the top-ranked electrode, we iteratively added electrodes
that maximized five fold cross-validation accuracy of the classifier until the optimal subset of eight electrodes was selected (see
Algorithm 1). This hybrid method balances interpretability (via the ranking) with predictive performance (via cross-validation)
while being computationally efficient53–56. The resulting optimal electrode configuration (Fp1, F7, F5, Fz, FT7, FC2, FC4,
FC6) was used for all subsequent analyses and compared with high-density EEG and the electrode layout of the iCognative
device.

Results and Analysis
This study aimed to classify concealed information categories into objects, persons, and places using a multimodal approach that
integrates neurophysiological signals recorded during a CIT. Multiple machine learning classifiers were evaluated, including
logistic regression, support vector machine, random forest, XGBoost, gradient boosting, LightGBM, and CatBoost. Feature
selection and hyperparameter tuning were applied to optimize performance.

Modality ML Models
Logistic Regression Support Vector Machine Random Forest XGBoost Gradient Boosting

Multimodal 71.48 ± 10.19 79.98 ± 8.41 83.66 ± 7.72 90.08 ± 6.98 94.24 ± 5.74
EEG 58.07 ± 5.97 58.15 ± 7.27 70.34 ± 5.35 72.67 ± 5.93 72.98 ± 5.76
Physiological 42.30 ± 13.70 35.40 ± 4.05 54.10 ± 10.50 54.20 ± 11.25 53.40 ± 10.99

Table 1. Cross-validated classification accuracies (mean ± SD) across classifiers and modalities.
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Multimodal versus Unimodal Classification Performance
Table 1 summarizes the cross-validated accuracies (mean ± SD) obtained for multimodal, unimodal EEG, and unimodal
physiological features across different classifiers. Multimodal integration consistently outperformed unimodal approaches for
all models. The Gradient Boosting classifier achieved the highest mean accuracy of 94.24 ± 5.74%, followed by XGBoost
(90.08 ± 6.98%) and CatBoost (89.72 ± 7.92%). LightGBM also demonstrated high performance (92.22 ± 6.51%). In
comparison, the EEG only models achieved a maximum accuracy of 72.98 ± 5.76%, while the physiological only models
reached 54.20 ± 11.25% at best, underscoring the substantial enhancement afforded by multimodal fusion. These findings
confirm that the neurophysiological features provides complementary information that strengthens the decoding of concealed
information categories.

Subject CV Accuracy (%) CV Precision (%) CV Recall (%) CV F1 Score (%) Kappa (%)
Subject 1 97.4 ± 1.5 97.5 ± 1.5 97.4 ± 1.5 97.4 ± 1.5 95.8 ± 2.4
Subject 2 99.8 ± 0.4 99.8 ± 0.4 99.8 ± 0.4 99.8 ± 0.4 99.7 ± 0.6
Subject 3 99.6 ± 0.8 99.6 ± 0.8 99.6 ± 0.8 99.6 ± 0.8 99.4 ± 1.3
Subject 4 94.4 ± 3.1 94.9 ± 2.7 94.4 ± 3.1 94.2 ± 3.4 90.8 ± 5.2
Subject 5 80.2 ± 3.8 80.5 ± 3.6 80.2 ± 3.8 80.2 ± 3.8 68.1 ± 6.2
Subject 6 97.0 ± 2.0 97.1 ± 1.9 97.0 ± 2.0 97.0 ± 2.0 95.2 ± 3.3
Subject 7 87.6 ± 4.8 88.4 ± 4.4 87.6 ± 4.8 87.3 ± 5.4 79.7 ± 8.2
Subject 8 97.4 ± 1.6 97.5 ± 1.5 97.4 ± 1.6 97.4 ± 1.7 95.8 ± 2.6
Subject 9 93.8 ± 2.4 94.0 ± 2.5 93.8 ± 2.4 93.8 ± 2.4 90.0 ± 3.9
Subject 10 95.2 ± 2.8 95.4 ± 2.7 95.2 ± 2.8 95.2 ± 2.8 92.3 ± 4.5

Table 2. Cross-validation(CV) multimodal performance metrics for each subject for gradient boost model.

Statistical Comparison Among Modalities
To statistically evaluate differences in classification performance among the three modalities, a one-way repeated measures
ANOVA was conducted on classification accuracies across participants. The analysis revealed a significant main effect of
modality on classification accuracy, F(2,18) = 71.40, p < 0.001, η2

G = 0.82, indicating a large effect size. Post-hoc Bonferroni-
corrected pairwise t-tests indicated that the multimodal condition (EEG + physiological signals) yielded significantly higher
accuracies than both the unimodal EEG (t(9) = −9.98, p < 0.001) and physiological conditions (t(9) = 11.38, p < 0.001).
Additionally, EEG performance was significantly higher than physiological (t(9) = 4.66, p = 0.0035). These results shown in
Figure 4 provide strong evidence that combining EEG and physiological signals produces a robust and synergistic improvement
in classification accuracy beyond either modality alone.

Subject Level Multimodal Performance
Subject wise evaluation of the gradient boosting model revealed consistently high performance across subjects as shown in
Figure 5 . Individual accuracies ranged from 80.2% to 99.8%, with a group mean of 94.2 ± 5.7%. Precision, recall, and
F1-scores were closely aligned (all ≈ 94.2 - 94.5%), indicating balanced classification performance across the three concealed
information categories as well as highlighting inter-subject differences in model performance. Cohen’s Kappa coefficients
ranged from 68.1 ± 6.2 to 99.7 ± 0.6, with a mean of 90.7 ± 9.3, indicating substantial to almost perfect agreement beyond
chance as shown in Table 2 . Notably, several subjects exhibited near perfect classification (≥ 99% accuracy), demonstrating
strong inter-subject generalizability and model robustness.

Overall, accurate decoding of hidden information categories was made possible by multimodal integration of neurophys-
iological signals, with an average accuracy of 94.2%, greatly above baselines for unimodal EEG(73%) and physiological
(54.2%).

Discussion
This study introduced a multimodal framework integrating EEG and physiological signals to classify concealed information
categories into objects, persons, and places recorded during CIT. Consistent with our hypotheses, the multimodal models
substantially outperformed unimodal EEG and physiological approaches, demonstrating the benefits of combining neuro-
physiological data. The best performing Gradient Boosting model achieved a mean accuracy of 94.2%, establishing a strong
benchmark for category level decoding of concealed knowledge.

Figure 6 shows the brain activity of subject 3 during the pre-stimulus, stimulus, and post-stimulus periods across different
stimulus types: Object, Person and Place. Each row corresponds to different stimulus categories, with column containing

8/17



Figure 4. Statistical comparison of classification accuracy across modalities. Violin plots show the distribution of
subject-level classification accuracies for physiological signals , EEG, and multimodal decoding. Each black dot represents an
individual participant, and gray lines connect within-subject measurements. The repeated measures ANOVA revealed a
significant main effect of modality on accuracy (F(2,18) = 71.40, p < 0.001). Post-hoc Bonferroni-corrected comparisons
show that the multimodal model significantly outperforms both unimodal approaches (p < 0.001), and EEG also outperforms
physiological signals (p = 0.0035).

different time points (T = -0.5s, 0.0s, 0.5s, 1.0s, 1.3s) which indicates the progression from pre-stimulus, through the stimulus
presentation, to post-stimulus responses.Object related stimuli exhibit stronger posterior and occipital activation, consistent
with the engagement of ventral visual object processing regions, including the lateral occipital complex57. Person related
stimuli elicit relatively greater central and frontal activation, aligning with engagement of face selective and social processing
networks, particularly the fusiform face area and adjacent frontal regions58. Place related stimuli display broader parietal and
posterior activation, in line with spatial and scene processing networks such as the parahippocampal place area and retrosplenial
cortex59. The temporal evolution from pre- to post-stimulus intervals reflects dynamic shifts in neural activity from anticipatory
attention to active perceptual and semantic processing. These category selective topographies are consistent with theoretical
neuroscience57–59 emphasizing content specific cortical representations during concealed information paradigms.

Figure 7 presents scalp topographic activation patterns across ten subjects as they transition from a baseline state to three
distinct stimulus conditions. At baseline, neural activity appears relatively uniform across subjects, providing a neutral state. In
the object condition, several subjects display stronger posterior activity, consistent with activation of ventral temporal object
sensitive networks that encode perceptual and semantic object knowledge60. In the person and place conditions, activation
becomes more extensive and spatially distinct, engaging facial and scene selective networks in the ventral temporal and medial
parietal cortices. From the CIT perspective, the presentation of person or place related probes may evoke not only perceptual but
also memory based orienting or inhibition signals, because these stimuli could carry concealed significance to the participant.
CIT research has shown that memory relevant probes (versus irrelevants) elicit enhanced neural or autonomic responses such
as larger P300 amplitudes or differential frontal negative slow waves interpreted under the orienting response or arousal
inhibition frameworks61. Thus, the gradation from baseline to object to person/place may reflect increasing stimulus salience or
meaningfulness to the subject, and accordingly, the brain maps show more robust activation (red) when the stimulus type likely
overlaps with the concealed information category.

We further investigated the impact of reducing electrode based electrode selection strategy described above on classification
performance. Three electrode configurations were compared: (i) the full 64-electrode montage (High Density Configuration),
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Figure 5. Per-subject classification accuracy using gradient boost model on mutimodal data. Bar plots show
cross-validated accuracy for each participant, with error bars representing standard deviation across folds. Accuracy varies
across individuals, highlighting inter-subject differences in model performance.

(ii) an optimized subset of eight electrodes derived from a hybrid feature importance and forward selection procedure (Optimal
Configuration), and (iii) the same eight-electrode configuration employed in BrainWave Science’s wearable device (iCognative
Configuration). From Table 3, it is evident that the multimodal condition for both reduced configurations maintained high
accuracy, exceeding the performance of the full 64-electrode system. The Optimal Configuration achieved 99.18 ± 0.68%
accuracy, performing nearly identically to the iCognative Configuration (99.02 ± 1.55%) for the Gradient Boosting model, and
slightly surpassing the high-density configuration (94.24 ± 5.74%). Similarly from Table 4, in the unimodal EEG condition,
the Optimal configuration (68.69 ± 3.48%) and the iCognative configuration (65.74 ± 5.49%) performed comparably to the
high-density configuration (72.98 ± 5.76%). These findings demonstrate that robust multimodal classification can be achieved
using a low-density EEG system when electrodes are strategically selected.

To better understand the contribution of different signals, we performed feature importance analysis across physiological
and EEG features. Among physiological features, mean skin conductance level (mean_scl), SD2, SDNN, RMSNN, and
SD1 were highly informative, reflecting autonomic arousal and stress responses linked to cognitive load during deception,
with mean_scl emerging as a particularly robust indicator. Heart rate variability features such as SDNN and RMSNN also

ML Models Different Electrode Configuration
iCognative Configuration Optimal Configuration High Density Configuration

Logistic Regression 63.00 ± 12.56 63.82 ± 11.08 71.48 ± 10.19
Support Vector Machine 49.34 ± 5.84 49.58 ± 4.87 79.98 ± 8.41
Random Forest 89.52 ± 5.52 89.72 ± 6.07 83.66 ± 7.72
XGBoost 97.64 ± 2.87 97.88 ± 1.61 90.08 ± 6.98
Gradient Boosting 99.02 ± 1.55 99.18 ± 0.68 94.24 ± 5.74
LightGBM 98.58 ± 2.30 98.90 ± 0.92 92.22 ± 6.51
CatBoost 97.06 ± 3.56 97.00 ± 2.22 89.72 ± 7.92

Table 3. Multimodal classification accuracy (%) aross different machine learning models and electrode configurations.
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 Pre-stimulus    Stimulus         Post-stimulus

OBJECT

 
PERSON

PLACE

Figure 6. Subject 3 scalp topography plots. Scalp topographic plots of subject 3 across differnt time pointsmaps showing
the brain activity during the pre-stimulus, stimulus, and post-stimulus periods across different stimulus types (Object, Person,
Place). Each row corresponds to different stimulus categories, with time points (T = -0.5s, 0.0s, 0.5s, 1.0s, 1.3s) displayed in
the columns indicates the progression from pre-stimulus, through the stimulus presentation, to post-stimulus responses. The
color bar represents z-score normalization of the EEG signal within a 300 ms window, with red representing high activity and
blue indicating low activity.

contributed significantly, consistent with prior studies showing that autonomic cardiac responses are sensitive to stress and
cognitive effort. EEG features exhibiting the highest importance included root mean square amplitude, ERP latency, alpha band
power, and peak amplitude at electrode C1, capturing both temporal and spatial neural dynamics associated with attentional
and cognitive processes during deception. Additional features, including zero crossing rate at AF8 and waveform length
at Cz, reflected finer aspects of signal complexity beyond simple amplitude measures. While features at C1 were highly
ranked, the electrode selection procedure prioritized a subset that maximized classification accuracy while reducing redundancy
across features. As a result, the final optimal electrode set (Fp1, F7, F5, Fz, FT7, FC2, FC4, FC6) spans prefrontal and
frontocentral regions, collectively capturing complementary neural and physiological information such as ERP timing, alpha
power, and autonomic responses. This explains why C1, despite its high feature-level importance, was not included in the
reduced montage, as its contribution overlapped with other selected electrodes. Integration of physiological and EEG signals in
the multimodal framework further enhanced classification performance, with autonomic markers remaining highly informative
and EEG-derived features at the selected prefrontal and frontocentral electrodes providing complementary information. In

ML Models Different Electrode Configuration
iCognative Configuration Optimal Configuration High Density Configuration

Logistic Regression 52.67 ± 5.12 52.86 ± 4.34 58.07 ± 5.97
Support Vector Machine 50.81 ± 7.87 52.83 ± 5.28 58.15 ± 7.27
Random Forest 64.71 ± 5.35 66.30 ± 3.32 70.34 ± 5.35
XGBoost 65.68 ± 5.25 68.26 ± 4.47 72.67 ± 5.93
Gradient Boosting 65.74 ± 5.49 68.69 ± 3.48 72.98 ± 5.76

Table 4. Unimodal EEG classification accuracy (%) across different machine learning models and electrode configurations.
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Figure 7. EEG topographic maps for all participants across stimuli. The topographic maps displays the brain activity
dynamics for 10 participants (S1 to S10) across object, person, and place stimuli. The color bar represents z-score
normalization of the EEG signal within a 300 ms window. The figure highlights individual variability in neural responses
across different stimuli.

particular, ERP latency at FC6 underscores the relevance of timing information from frontal-central regions in detecting
deceptive responses. The eight-electrode configuration effectively covers regions implicated in executive control, conflict
monitoring, and affective regulation, processes known to be engaged during deception and associated with sympathetic arousal
and cognitive inhibition. Frontal midline theta oscillations and slow-wave activity captured by these electrodes are sensitive
to mental effort and emotional tension, demonstrating that the selected set balances coverage of both neural and autonomic
processes while minimizing redundancy. While the iCognative® platform demonstrates practical applicability of EEG-based
concealed information detection, our results indicate that high decoding accuracy can be achieved with a low-density EEG
setup when combined with physiological sensors.

A central implication of these findings is that concealed information, as elicited by the CIT, is best understood as a distributed
cognitive state rather than a singular neural event. The observed gains from multimodal integration suggest that concealment
engages at least two partially dissociable processes: (i) rapid perceptual semantic access to stimulus content and its mnemonic
relevance, indexed by EEG dynamics such as ERP latency and oscillatory modulation, and (ii) sustained autonomic regulation
reflecting arousal, conflict, and response inhibition, indexed by skin conductance and heart rate variability. Importantly, neither
process alone was sufficient to achieve high decoding accuracy across subjects. This interpretation is consistent with theoretical
models of the CIT proposing that detection effects arise from the interaction between orienting responses to meaningful stimuli
and top–down control mechanisms that regulate overt responding under concealment demands8. From this perspective, EEG
features primarily capture the timing and allocation of attentional and executive resources associated with stimulus evaluation
and response control62, whereas physiological measures reflect the downstream consequences of these processes on autonomic
state, including sympathetic arousal and cardiac regulation63. The success of ensemble-based multimodal models further
suggests that these components interact in a nonlinear manner, consistent with the notion that concealed knowledge is not
expressed uniformly across individuals or trials but fluctuates as a function of cognitive load, emotional salience, and control
efficacy24.

This interpretation also helps explain why reduced, fronto-central electrode montages were sufficient for high performance
in the multimodal condition. Rather than requiring fine grained spatial resolution across the entire cortex, effective decoding
appears to depend on capturing control related neural dynamics that integrate perceptual input with autonomic regulation.
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Unimodal EEG Multimodal 

Unimodal Physiological

Figure 8. Feature importance across unimodal and multimodal conditions. Feature importance scores obtained using the
SelectKBest method for three feature sets: unimodal physiological features (orange), unimodal EEG features (blue), and
multimodal features combining EEG and physiological signals (green). The Feature importance scores are normalized for
better visualisation.

Fronto-central regions are well positioned to mediate this integration, given their established role in conflict monitoring,
inhibitory control, and regulation of physiological arousal. The absence of performance gains from high density EEG suggests
that additional electrodes may introduce redundancy or noise without substantially increasing access to the cognitive variables
most relevant to concealment. This challenges the assumption that maximal electrode coverage is inherently advantageous for
applied neurophysiological classification and instead emphasizes the importance of task-informed electrode selection.

At the same time, the present results delineate important boundary conditions. The high accuracies reported here were
obtained under controlled experimental conditions with predefined stimulus categories and limited variability in task structure.
Concealed information in applied contexts may involve more complex, overlapping, or emotionally salient representations,
which could alter the balance between neural and autonomic contributions8. Moreover, the current framework does not explicitly
model strategic countermeasures or individual differences in cognitive control capacity, both of which are known to modulate
CIT related neural and autonomic responses14, 24. Addressing these factors will be essential for determining the robustness and
generalizability of multimodal concealed information detection beyond laboratory settings.

Conclusion
This study introduced a multimodal framework for classifying the category of concealed information into objects, persons,
and places by integrating neurophysiological signals recorded during a CIT. Through systematic comparison across machine
learning models and modalities, the proposed approach demonstrated a substantial improvement in decoding accuracy compared
to unimodal EEG and physiological inputs. The Gradient Boosting model achieved the highest overall performance, yielding
a mean classification accuracy of 94.24% across subjects, significantly surpassing unimodal EEG (72.98%) and unimodal
physiological (53.4%) baselines. Statistical analysis confirmed that multimodal fusion provides a robust and complementary
advantage,which signifies the importance of combining neurophysiological measures in detecting concealed knowledge. Another
key contribution of this work lies in the electrode selection strategy, which identified a compact subset of eight electrodes
primarily distributed across prefrontal and frontocentral regions as sufficient for maintaining high decoding accuracy. These
regions are well known for their involvement in executive control and stress related cognitive load, consistent with established
neurophysiological correlates of deception. Furthermore, benchmarking with electrode configuration of iCognative® device
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demonstrated that comparable performance can be achieved with low density, research grade EEG configuration. This finding
underscores the potential for future translation of the proposed approach into practical, portable, and scalable applications. In
summary, the present work demonstrates that accurate decoding of concealed information categories can be achieved using a
compact multimodal configuration. By uniting data driven electrode selection with cognitive neuroscientific principles, this
study bridges laboratory grade EEG research with emerging wearable neurotechnology. By bridging cognitive neuroscience
and computational modeling, this study advances the feasibility of interpretable, neurophysiology based forensic technologies.
Future work will focus on expanding the dataset to diverse populations, incorporating real time signal processing, and exploring
deep learning architectures for end-to-end multimodal fusion, thereby moving closer to deployment of neurophysiological
deception detection in applied settings.

Data availability
The dataset of this study are available from the corresponding author on reasonable request.
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of Maryland Baltimore County (Protocol #408 – Selection of Optimal Control Signals for Human Machine Interfaces). The
studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their
written informed consent to participate in this study.
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